Dynamic properties of biomacromolecules are essential for understanding the structural basis of their biological functions such as catalysis, interaction, regulation and cellular signaling. NMR spectroscopy stands for a powerful technique for describing these fundamental features. Supported by our NMR platform, Creative Biostructure is proud to offer services in research of protein dynamics, developing experimental NMR approaches for conformational analysis, and characterizing reorganizational protein disorder.
Protein dynamics affects a wide range of functions, such as catalytic turnover of enzymes, signaling/regulation, binding via induced fit or conformational selection. NMR dynamics is divided into 2 regimes: fast and slow. Fast timescale dynamics ranges from picoseconds to nanoseconds, and is limited by rotational correlation time of protein; slow timescale dynamics spans from microseconds to milliseconds, and requires chemical shift difference. Many interesting biological processes, such as transportation and catalysis, employ slow dynamics. Small domain movements in protein-ligand interaction involve slow-intermediate conformational changes, which can be detected by NMR.