Forscher untersuchten nun, wie 3D-Nanoelektroden beschaffen sein sollten, damit biologische Zellen sich optimal mit ihnen verbinden können. Die Erkenntnisse sind für die Entwicklung von Netzhaut-Implantaten oder Biosensoren für Medikamententests interessant.
Zellen besitzen die Fähigkeit, Fremdkörper zu umhüllen, um sie sich anschließend einzuverleiben. Der Prozess ermöglicht es der Zelle, Boten- und Nährstoffe aufzunehmen. Aber der Mechanismus ist auch ein Einfallstor für Viren und Bakterien. „Bei der Entwicklung von nanostrukturierten 3D-Oberflächen für bioelektronische Schnittstellen nutzen wir dieses Verhalten aus, um die Verbindung zwischen der Zellmembran und der Elektronik zu verbessern“, erklärt Prof. Andreas Offenhäusser, Direktor des Jülicher Peter Grünberg Instituts, Bereich Bioelectronics (PGI-8/ICS-8). Die winzigen 3D-Nanoelektroden wirken auf biologische Zellen wie ein Köder, der schließlich von ihnen geschluckt wird. Doch auf welchen Köder, oder eher auf welche Form, die Zellen am besten ansprechen, war bislang offen. Weltweit werden verschiedene Ansätze verfolgt. Einige beschränken sich auf Elektroden, die nur aus einem einfachen zylindrischen Stiel bestehen, andere sehen zusätzlich noch eine pilzähnliche Kappe am oberen Ende vor. Unter dem Fokussierten Ionenstrahl- und Rasterelektronenmikroskop konnten die Jülicher Biophysiker zeigen, dass die Wahl des Designs tatsächlich den Zellkontakt beeinflusst. Optimal ist ein möglichst langer dünner Stiel mit breiter Kappe, wie die Wissenschaftler mithilfe eines theoretischen Modells errechnet haben. Von der Zellmembran umhüllte Elektroden unter dem Rasterlekektronenmikroskop. © Quelle: Forschungszentrum Jülich „Für eine Vielzahl von Anwendungen ist es wichtig, dass die Zelle sehr nah an der Elektrode anliegt. Schon der Abstand von einem zehntausendstel Millimeter reicht aus, und man kann nichts mehr messen“, verdeutlicht Andreas Offenhäusser. Die Kopplung von lebendem Gewebe und anorganischer Halbleiterelektronik zu verbessern, ist eine der größten Herausforderungen bei der Entwicklung bioelektronischer Komponenten. Das Anwendungsspektrum reicht von Neuroprothesen, die eines Tages defekte Organe ersetzen könnten, bis hin zu hochpräzisen Sensorchips für In-Vitro-Experimente. Letztere ermöglichen es zunehmend, mithilfe einzelner Zellen, die sich auf dem Chip ansiedeln, preisgünstig, schnell und ethisch verträglich die Wirkung von Medikamenten zu überprüfen oder Prozesse zu untersuchen, die als Ursache für Hirnerkrankungen infrage kommen. Originalpublikation: Interfacing Electrogenic Cells with 3D Nanoelectrodes: Position, Shape, and Size Matter Andreas Offenhäusser et al.; ACS Nano, doi: 10.1021/nn500393p; 2014