Bei der Entstehung von Tumoren vervielfältigen sich häufig weitere Onkogene – als eine Art Trittbrettfahrer. Sie können bisher unbekannte Schwachstellen erzeugen, was neue Therapieansätze ermöglicht.
Vor allem Veränderungen im Erbgut gelten als Ursache für eine Krebserkrankung. Häufig handelt es sich dabei um Amplifikationen: Vervielfältigungen von Genen, die eine Krebsentstehung begünstigen, wie beispielsweise Onkogene und ihre verstärkenden Elemente. Die Gene werden dabei übermäßig häufig kopiert und liegen anschließend entweder im Erbgut oder als separate DNA-Ringe in großer Zahl in der Zelle vor.
„Genau genommen vervielfältigt die Zelle allerdings nicht nur die Krebsgene, sondern kopiert auch die davor- und dahinterliegenden Abschnitte der DNA mit“, erklärt Prof. Anton Henssen, Leiter der Arbeitsgruppe „Genomische Instabilität in pädiatrischen Tumoren“ am Experimental and Clinical Research Center (ECRC), einer gemeinsamen Einrichtung der Charité – Universitätsmedizin Berlin und des Max Delbrück Center und Kinderonkologe an der Charité. „In diesen mitkopierten Abschnitten liegen oft weitere Gene, die bisher als unbedeutend für die Krebsentstehung galten und deshalb schlicht ‚Passagier-Gene‘ genannt wurden.“
Gemeinsam mit Dr. Jan Dörr, ebenfalls Charité-Kinderonkologe und Forscher am ECRC, hat sein Team in der im Fachjournal Cancer Discovery veröffentlichten Studie gezeigt: Die genetischen Trittbrettfahrer sind mehr als nur stille Passagiere. Sie bringen grundlegende Vorgänge in der Zelle durcheinander. Weil die Tumorzelle diese Störung wieder ausgleichen muss, wird sie von Prozessen abhängig, die eigentlich mit dem Tumorwachstum gar nichts zu tun haben. „Damit entsteht eine Achilles-Ferse an einer völlig unerwarteten Stelle, von der wir bisher nichts wussten. Wir können den Krebs also von einer neuen Flanke angreifen, wenn wir bei der Behandlung auf die Passagier-Gene abzielen“, sagt Henssen.Rot eingefärbte, abgestorbene Zellen in DDX1-MYCN co-amplifizierten Neuroblastoma nach einer Rapamycin-Behandlung. Credit: Henssen Lab, Max Delbrück Center
Am Beispiel des Neuroblastoms zeigten die Wissenschaftler, wie sich diese bisher unbekannten Abhängigkeiten potenziell therapeutisch nutzen lassen. Das Neuroblastom ist eine Krebserkrankung, die vor allem kleine Kinder betrifft und als besonders bösartig gilt. In Experimenten mit Mäusen zeigte sich, dass Neuroblastome viel anfälliger für das bereits zugelassene Krebsmedikament Rapamycin sind, wenn sie nicht nur das Krebsgen MYCN, sondern auch das Passagier-Gen DDX1 in hoher Zahl aufweisen. „Das liegt daran, dass das Passagier-Gen den Stoffwechsel der Tumorzelle stört“, erklärt Jan Dörr. „Die Zelle muss die Störung kompensieren und Rapamycin hindert sie daran. Das führt schließlich zum Tod der Tumorzelle.“
Das Neuroblastom zusätzlich zu weiteren Wirkstoffen mit Rapamycin zu behandeln, könnte also insbesondere jenen Patienten helfen, deren Tumor sowohl das Krebs- als auch das Passagier-Gen vervielfältigt hat. Ob das tatsächlich der Fall ist, wollen die Forscher nun in klinischen Studien prüfen. „Sollte sich das bestätigen, hätten wir einen neuen Marker für die gezielte Therapiewahl in der Hand“, sagt Dörr.
Passagier-Gene in den Fokus zu nehmen, kann vermutlich nicht nur beim Neuroblastom helfen. Darauf deuten Millionen von Daten zur wechselseitigen Abhängigkeit von Genen in 26 verschiedenen Tumorarten hin, die öffentlich zugänglich sind und die das Team für die Studie neu durchforstete. „Wir konnten in zehn Fällen nachweisen, dass durch Passagier-Gene in den Tumoren neue Abhängigkeiten entstanden sind“, sagt Yi Bei, Doktorand in Henssens Team an der Charité und Erstautor der Veröffentlichung.
„Wir gehen davon aus, dass das nur die Spitze des Eisbergs ist und wir bei besserer Datenlage noch mehr dieser Fälle entdecken würden“, sagt Anton Henssen. Dass Passagier-Gene in Tumoren eine Schwachstelle erzeugen, sei offenbar ein recht weit verbreitetes Phänomen. „Wir halten den Ansatz, Tumoren unter anderem an ihren Passagier-Genen zu attackieren, deshalb auch bei anderen Krebserkrankungen für vielversprechend.“
Dieser Artikel basiert auf einer Pressemitteilung des Max-Delbrück-Centrums für Molekulare Medizin in der Helmholtz-Gemeinschaft. Die Originalpublikation haben wir euch hier und im Text verlinkt.
Bildquelle: Iurii Melentsov, Unsplash