Immer mehr Menschen leiden unter Osteoporose. Forscher haben jetzt Moleküle auf Zuckerbasis entwickelt, mit denen die Knochenregeneration lokal deutlich verbessert werden könnte.
Die Fähigkeit des Menschen, Knochen stetig zu erneuern und somit widerstandsfähig zu halten, nimmt mit zunehmendem Alter ab und wird durch Krankheiten wie Osteoporose weiter eingeschränkt. Um der alternden Bevölkerung zu helfen, suchen Forscher nach neuen Therapien zur Verbesserung der Knochenregeneration.
Ein interdisziplinäres Team des Biotechnologischen Zentrums (BIOTEC), der Medizinischen Fakultät und des Max-Bergmann-Centrums für Biomaterialien (MBC) der TU Dresden hat nun Moleküle entwickelt, welche die Knochenregeneration verbessern könnten. Die Ergebnisse wurden in der Fachzeitschrift Biomaterials veröffentlicht. Die Forscher haben mit Computermodellen und Simulationen neuartige, bioinspirierte Moleküle entwickelt, mit denen sie die Knochenregeneration bei Mäusen verbessern konnten. Sie können in Biomaterialien eingebunden und somit lokal in Knochendefekte eingebracht werden. Die neuartigen Moleküle basieren auf Glykosaminoglykanen, langkettigen Zuckern wie Hyaluronsäure oder Heparin.
„Dank der Arbeit unserer Gruppe und anderer Gruppen kennen wir einen bestimmten molekularen Weg, den Wnt-Signalweg, der die Knochenbildung und -reparatur reguliert. Wir konnten ihn auf zwei Bremssignale eingrenzen, die gemeinsam die Knochenregeneration blockieren: Sclerostin und Dickkopf-1“, erklärt Prof. Lorenz Hofbauer. „Die große Herausforderung für die Entwicklung von Medikamenten zur Verbesserung der Knochenheilung besteht darin, diese beiden Blockade-Proteine gleichzeitig und effizient auszuschalten.“
Ein interdisziplinärer Ansatz war der Schlüssel zum Erfolg. Die Gruppe Strukturelle Bioinformatik unter der Leitung von Prof. Maria Teresa Pisabarro am Biotechnologischen Zentrum (BIOTEC) der TU Dresden und die Gruppe Funktionelle Biomaterialien von Dr. Vera Hintze vom Max-Bergmann-Zentrum für Biomaterialien bündelten ihre Expertise mit dem Knochenexperten Hofbauer. „Seit mehreren Jahren nutzen wir die Möglichkeiten der Computersimulation, um zu untersuchen, wie Proteine, welche die Knochenbildung regulieren, mit ihren Rezeptoren interagieren. All dies mit dem Ziel, neuartige Moleküle zu entwerfen, welche diese Interaktionen gezielt beeinflussen können. Wir arbeiteten im Tandem zwischen Computer und Labor, entwarfen und testeten neuartige Moleküle, übertrugen die Ergebnisse auf unsere molekularen Modelle und lernten mehr über die molekularen Eigenschaften, die für unser Ziel erforderlich waren“, erklärt Pisabarro.
Hofbauers Team setzte schließlich mit diesen Molekülen beladene Biomaterialien bei Knochendefekten in Mäusen ein, um ihre Wirksamkeit zu testen. Dabei erwiesen sich die mit den neuen Molekülen beladenen Materialien im Vergleich zum Standard-Biomaterial als deutlich wirksamer und steigerten die Knochenheilung um bis zu 50 Prozent, was auf ein enormes regeneratives Potenzial hinweist.
Das Team nutzte rationales Wirkstoffdesign, um neuartige Moleküle mit maßgeschneiderten Eigenschaften und minimalen Nebenwirkungen zu entwickeln. Durch den Einsatz von Berechnungsmethoden zur Vorhersage und Verfeinerung der Eigenschaften der entworfenen Moleküle konnte das Team eine Reihe von Kandidaten entwickeln, die das größte Potenzial haben, die Proteine auszuschalten, und die Knochenregeneration zu blockieren.Die Expertise der Gruppe Pisabarro ermöglichte eine detaillierte Analyse der dreidimensionalen (3D) Strukturen der beiden Proteine, die die Knochenregeneration blockieren. Auf diese Weise konnten sie die Interaktion der Proteine mit ihren Rezeptoren in 3D modellieren und Schlüsselstrukturen identifizieren, also spezifische physikalisch-chemische und dynamische Eigenschaften, die für die biologische Interaktion wesentlich sind.
„Mit Hilfe von Molecular Modelling haben wir neue Strukturen entworfen, welche die relevanten Rezeptorinteraktionen mit den beiden Proteinen nachahmen. Wir wollten, dass diese Bindung stärker ist, als ihre natürlichen Wechselwirkungen. Auf diese Weise würden unsere neuen Moleküle die Proteine einfangen und effektiv ausschalten und dadurch die Knochenregeneration fördern“, erklärt Pisabarro.
„Die von Pisabarros Gruppe entworfenen Moleküle wurden von unseren Kollegen an der Freien Universität Berlin synthetisiert und dann von uns in Bezug auf ihre Proteinbindungseigenschaften mittels biophysikalischer Interaktionsanalyse untersucht“, sagt Hintze. „Für jedes Molekül konnten wir messen, wie stark es an die Proteine bindet sowie mit der Bindung der Proteine an ihre natürlichen Rezeptoren interferiert. Auf diese Weise konnten wir empirisch zeigen, wie effektiv sie damit die hemmenden Proteine ausschalten.“ Die biologische Relevanz dieser Wechselwirkungsstudien testete Hofbauers Gruppe in einem Zellkulturmodell und später in Mäusen.
Die neu entwickelten Moleküle könnten dazu verwendet werden, Proteine auszuschalten, die die Knochenregeneration blockieren, und zur Entwicklung neuer, wirksamerer Therapien für Knochenbrüche und andere Knochenerkrankungen führen.
Der Beitrag basiert auf einer Pressemitteilung der Technischen Universität Dresden. Die Originalpublikation findet ihr hier und im Text verlinkt.
Bildquelle: CHUTTERSNAP, unsplash