Optische Cochlea-Implantate versprechen eine verbesserte Wiederherstellung des Hörens bei Schwerhörigkeit und Taubheit. Forscher definierten nun erstmals geeignete Stimulationsparameter für den Einsatz der Implantate.
Die Optogenetik hat die Biowissenschaften und die Medizin revolutioniert. Sie erlaubt es, die Aktivität von Zellen und ihrer Netzwerke über Lichtpulse gezielt zu steuern und eröffnet damit völlig neue Perspektiven für die Therapie von Funktionsstörungen sensorischer Systeme, wie Hören und Sehen. Die optogenetische Behandlung von Schwerhörigkeit und Taubheit durch das optische Cochlea-Implantat (oCI), befindet sich noch im präklinischen Stadium. Vorklinische Studien und Simulationen legen nahe, dass das Hören mit Licht das Potenzial hat, einen nahezu physiologischen Höreindruck zu erzeugen, der auch das Erkennen emotionaler Zwischentöne und komplexer Melodien einschließt.
Welche Anforderungen für den klinischen Einsatz des oCI beim Menschen erfüllt sein müssen, erforscht Dr. Antoine Tarquin Huet. „Das Hören mit Licht setzt voraus, dass das oCI akustische Signale in ein Muster aus Lichtsignalen umwandelt, die dann die Nervenzellen in der Hörschnecke, der Cochlea, in geeigneter Weise stimulieren. Die optogenetische Stimulation muss dafür genau auf die Kodierungseigenschaften der Hörnervenzellen abgestimmt sein“, sagt Huet, der am Institut für Auditorische Neurowissenschaften der Universitätsmedizin Göttingen forscht.
„Wir haben nun erstmals geeignete Stimulationsparameter definiert, innerhalb derer die Kontrolle der Hörnervenzellen mittels künftiger optogenetischer Prothesen, wie dem oCI plausibel ist“, so Huet. In einer kürzlich veröffentlichten Studie beschreiben die Göttinger Hörforscher auch, wie eine schnelle und zuverlässige Charakterisierung künftiger optogenetischer Werkzeuge gelingen kann, mit denen sich die Verarbeitung neuronaler Signale zwischen Ohr und Gehirn untersuchen lässt. Die Erkenntnisse sind in der Fachzeitschrift Brain Stimulation veröffentlicht.
Die Wiederherstellung des Hörens durch Optogenetik erlaubt es, funktionsuntüchtige oder fehlende Sinneszellen zu umgehen, indem die Aktivität nachgeschalteter Hörnervenzellen gezielt über Lichtpulse gesteuert wird. Der Ansatz erfordert eine Gentherapie, bei der die Hörnervenzellen durch Einbau lichtsensitiver Ionenkanäle, sogenannter Kanalrhodopsine, lichtempfindlich gemacht werden.
Über einen implantierbaren optischen Stimulator des oCI erfolgt die gezielte Stimulation der Hörnervenzellen mit Licht. Diese führt zum Öffnen der Kanäle und einem Einstrom von Ionen, es kommt zu einem Aktionspotential, die Nervenzelle wird elektrisch erregt. Lichtpulse zur Anregung des Hörnervs sind weitaus präziser einsetzbar als Strom. So lassen sich viel kleinere Bereiche mit weniger Hörnervenzellen aktivieren als beim bisher verwendeten elektrischen CI.
Um mit Licht das Hören wiederherzustellen, ist die Voraussetzung, dass das oCI die eintreffenden Schallinformationen so in Lichtsignale übersetzt, dass diese wiederum in geeigneter Weise die Nervenzellen in der Hörschnecke aktivieren. Um den Weg für klinische Studien und damit den zukünftigen Einsatz beim Menschen zu bahnen, sind dafür zunächst die Grenzen zu definieren, innerhalb derer die Aktivität der Nervenzellen in der Cochlea kontrolliert werden kann.
„Die optimale Steuerung der neuronalen Aktivität mit Licht ist alles andere als trivial“, sagt Huet. „Sie erfordert eine gute Abstimmung von Bildung und Einbau der verwendeten Kanalrhodopsine in die Nervenzellmembran, eine optimale Anpassung der optogenetischen Stimulationsparameter an die Kodierungseigenschaften der angesteuerten Neuronenpopulation und die richtige Wahl von Laserdioden.“
Die Göttinger Wissenschaftler stellen in ihrer Studie für die optogenetische Kontrolle von Nervenzellen einen Parameterbereich vor und wenden ihn auf die Hörbahn an. Hierfür ist eine hohe zeitliche Genauigkeit der Stimulation erforderlich. Sie untersuchten, wie Lichtpulse definierter Intensität und Dauer die Aktivierung einzelner Hörnervenzellen in der Cochlea von Mäusen kontrollieren. Dazu brachten sie ein natürlich vorkommendes Kanalrhodopsin in die Spiralganglionneurone (SGN) der Cochlea von Mäusen ein. Sie konnten zeigen, dass durch Anpassen der Dauer von Lichtpulsen eine abgestufte Aktivierung der Hörnervenzellen erreicht werden kann. Diese Erkenntnis ist für den optimalen Einsatz von Laserdioden interessant. Zudem definierten sie die optimale Lichtpulsdauer sowie eine Obergrenze für die Frequenz der Lichtpulse unter den gegebenen Bedingungen.
Interessanterweise wies die Gruppe der optogenetisch gesteuerten Hörnervenzellen eine große Vielfalt auf. „Aus theoretischer Sicht ist diese funktionelle Vielfalt ein Schlüsselfaktor, der die Menge der kodierten Informationen erweitert und ihre Zuverlässigkeit erhöht“, sagt Huet. Darüber hinaus deuteten Daten darauf hin, dass Neuronen, die den SGNs nachgeschaltet sind, auf nahezu physiologische Weise erregt werden könnten, wenn SGNs optogenetisch stimuliert werden.
Dieser Artikel basiert auf einer Pressemitteilung der Universitätsmedizin Göttingen. Die Originalpublikation findet ihr hier und im Text.
Bildquelle: Franco Antonio Giovanella, unsplash