Hirnödeme sind eine gefährliche Komplikation bei vielen Erkrankungen des Gehirns, etwa eines Schlaganfalls. Mit einem neuen Messverfahren lassen sich die zellulären Ursachen von Hirnödemen besser entschlüsseln.
Unser Gehirn ist durch den knöchernen Schädel gut geschützt. Viele Erkrankungen führen jedoch zu einer Anschwellung des Gehirngewebes, was als Hirnödem bezeichnet wird. Da sich das Gehirn innerhalb des Schädels nicht ausdehnen kann, kommt es in Folge dessen oft zu einem gefährlichen Anstieg des Hirndrucks. Dies schädigt weitere Gehirnzellen und kann zum Beispiel bei ursächlichen Schlaganfällen die Blutversorgung im Gehirn noch weiter verschlechtern.
Die Ursachen von Hirnödemen sind vielfältig, bis heute existieren nur wenige therapeutische Ansätze, um sie erfolgreich einzudämmen. Daher ist bei vielen Patienten eine operative Entfernung des Schädeldachs – die Kraniektomie – notwendig, um dem Gehirn genügend Raum zu verschaffen. Diese Operation ist aber nicht ohne Risiken und unterdrückt auch die gefährliche Schwellung nicht.
Prof. Christine Rose und ihr Team vom Institut für Neurobiologie der HHU entwickelten nun ein neues Verfahren, mit dem sie in Echtzeit die Veränderungen darstellen können, die zu einer Schwellung von Nervenzellen führen. Dieses bildgebende Verfahren, „rapidFLIM“ genannt („schnelle Fluoreszenz-Lebenszeitmessung“), erlaubt es, zelluläre Prozesse in bisher unerreichter zeitlicher Auflösung darzustellen. Konzeptionelle Unterstützung leistete Prof.Christian Henneberger von der Universität Bonn.
In ihrem jetzt erschienenen Paper stellten die Forscher die Bedingungen, denen Nervenzellen bei einem ischämischen Schlaganfall ausgesetzt sind, im Labor nach. Dr. Jan Meyer, einer der beiden Erstautoren der Studie: „Mithilfe des rapidFLIM konnten wir zeigen, dass eine zusammenbrechende zelluläre Energieversorgung – eine der wesentlichen Begleiterscheinungen eines Schlaganfalls – dazu führt, dass Nervenzellen schnell mit Natriumionen beladen werden. Dies wiederum verursacht die nachfolgende Zellschwellung maßgeblich.“
Dr. Niklas Gerkau, Co-Erstautor der Studie, ergänzt: „Durch bisherige Verfahren war es nicht möglich, den zeitlichen Verlauf und das Ausmaß dieser Natriumbeladung richtig abzubilden. rapidFLIM in Kombination mit unserer hochauflösenden Multiphotonen-Mikroskopie eröffnet uns neue Perspektiven und ermöglicht auch ein besseres Verständnis der Natriumregulation von Nervenzellen.“
Die Forscher entdeckten in ihrer Studie weiterhin einen bislang unbekannten Mechanismus für die fatale Natriumbeladung, bei dem der Ionenkanal TRPV4 in den Nervenzellen eine wesentliche Rolle spielt. Dieser Kanal trägt wesentlich dazu bei, wie viel des Elements Natrium in die Zelle gelangt. Rose: „Der TRPV4-Kanal ist ein vielversprechender Ansatzpunkt, um zelluläre Schäden und die Infarktgröße nach einem ischämischen Schlaganfall zu begrenzen.“
Dieser Artikel basiert auf einer Pressemitteilung der Heinrich-Heine-Universität Düsseldorf. Die Originalpublikation haben wir euch hier und im Text verlinkt.
Bildquelle: Priyanka Singh, Unsplash