Durch sogenannte Deuterierung lässt sich die Wirkdauer von Medikamenten deutlich verlängern. Dabei wird das Wasserstoff-Isotop Deuterium in die Wirkstoff-Moleküle eingebaut. Forscher haben zu diesem Zweck nun eine neue, zielsichere Methode entwickelt.
Wasserstoff ist das leichteste aller Elemente. Es besteht in der Regel lediglich aus einem positiv geladenen Proton und einem negativ geladenen Elektron. Man nennt es in dieser Form auch Protium. Es gibt aber auch noch zwei schwerere Wasserstoff-Isotope: Deuterium und Tritium. Der Deuteriumkern enthält zusätzlich zum Proton ein Neutron, beim Tritium sind es gar zwei. Beide sind sehr selten; Tritium ist zudem - im Gegensatz zu Deuterium und Protium - radioaktiv.
Anschauliches Experiment: Die roten Würfel aus geforenem Wassereis schwimmen ganz normal oben. Die grünen Würfel aus schwerem Wasser sinken ab. Credit: Volker Lannert/Uni Bonn Deuterium ist seit einigen Jahren in den Fokus der Pharmaforschung geraten, denn es kann dafür sorgen, dass Medikamente 5-, 10- oder sogar 50-fach langsamer abgebaut werden. „Wir nennen das den kinetischen Isotopen-Effekt“, erklärt Prof. Andreas Gansäuer vom Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn. Ursache ist, dass viele Reaktionen - auch der Abbau von Wirkstoffen - nicht spontan ablaufen. Sie benötigen zunächst einmal einen leichten „Schub“, die Aktivierungsenergie. „Wenn man Wasserstoff durch Deuterium ersetzt, nimmt die Aktivierungsenergie in der Regel etwas zu“, sagt Gansäuer. „Dadurch laufen Reaktionen langsamer ab. Das betrifft auch die Verstoffwechselung von Pharmazeutika in der Leber.“
Wenn man Deuterium statt Protium in Medikamente einführt, entfalten sie also eine längere Wirkung. Sie können so niedriger dosiert oder seltener eingenommen werden. Allerdings ist Deuterium selten und damit vergleichsweise teuer. Idealerweise sollte man also nur an den Stellen Deuterium einführen, an denen die Verstoffwechselung auch bevorzugt stattfindet. Hier kommt das neue Verfahren ins Spiel.
Es basiert auf einer Klasse von Substraten, den Epoxiden, die heute fast beliebig auf vielen verschiedenen Wegen herstellbar sind. Man kann sich diese Gruppen als eine Art „Dreieck“ vorstellen, bei dem zwei Ecken von Kohlenstoff-Atomen und die dritte von einem Sauerstoff-Atom gebildet werden. Solche Dreiringe stehen unter großer Spannung und reißen daher leicht an einer Seite auf. Epoxide speichern also wie eine gespannte Feder Energie, was sich dann für bestimmte Reaktionen nutzen lässt.
„Wir haben Epoxide in verschiedene Testmoleküle eingeführt und den Dreiring dann mit unserem Katalysator geöffnet“, erklärt Gansäuer. „Dieser enthält ein Titan-Atom, an dem Deuterium gebunden ist.“ Wird der Epoxid-Ring zerschnitten, entstehen bildlich gesprochen zwei freie Enden. An eines davon bindet der Katalysator, der dann in einem zweiten Schritt das Deuterium auf das noch freie Ende überträgt. „Wir können auf diese Weise ein Deuterium-Atom an einer einzigen Stelle und mit einer ganz bestimmten und gewünschten räumlichen Orientierung einführen“, sagt Gansäuer.
Ein weiterer Vorteil der Methode: Bei vielen komplexen Molekülen gibt es zwei verschiedene Möglichkeiten der Bindung, die sich spiegelbildlich zueinander verhalten. Das neue Verfahren kann dafür verwendet werden, dass fast ausschließlich eine der beiden Formen entsteht. „Da Gemische spiegelbildlicher Moleküle sich nur sehr schwer trennen lassen und sie zudem im menschlichen Körper oft unterschiedliche Eigenschaften haben, ist eine solche Stereoselektivität sehr wichtig“, sagt Gansäuer.
Mit der entwickelten Methode konnten beispielsweise deuterierte Vorstufen von Ibuprofen und und Venlafaxin hergestellt werden. Die Autoren sind zuversichtlich, dass sie sich zukünftig noch auf viele weitere Pharmazeutika anwenden lassen wird.
Dieser Artikel beruht auf einer Pressemitteilung der Rheinischen Friedrich-Wilhelms-Universität Bonn. Die Originalpublikation haben wir euch hier und im Text verlinkt.
Bildquelle: Lukas, Pexels.