Die Diagnose Glioblastom ist noch immer ein Todesurteil. Eine neue Methode erlaubt jetzt, das Ansprechen einzelner Tumorzellen auf bestimmte Therapien in Echtzeit zu verfolgen. Startschuss für neue Behandlungsformen?
Das Glioblastom – der tödlichste Gehirntumor überhaupt – kann resistent gegen Therapien werden. Um neue Therapieoptionen für diese Krebsform entwickeln zu können, müssen diese Resistenzmechanismen aufgeklärt werden. „In den vergangenen 20 Jahren kam kein einziges neues wirksames Medikament auf den Markt. Und das, obwohl keine andere Tumorart molekularbiologisch so gut charakterisiert ist“, betont Matthias Schmitt, Doktorand in der MDC-Arbeitsgruppe Molekulare Onkologie von Dr. Gaetano Gargiulo.
Das Problem: Die meisten Studien waren bisher auf die Biopsie und molekulare Charakterisierung des kompletten Tumors ausgerichtet. Die Zusammensetzung eines Glioblastoms ändert sich jedoch auf Einzellzellebene mit der Zeit. Insbesondere, wenn der Tumor nach zunächst erfolgreicher Therapie zurückkehrt. Dabei gehen die Tumorzellen häufig in den aggressivsten Subtyp über. Diesen Identitätswechsel können molekulare Reporter nun sichtbar machen.
Molekulare Reporter sind synthetische Kopien von DNA-Sequenzen, welche die Aktivität jener Gene regulieren, die die Zellumwandlung in Gang setzen oder stoppen. „Wir haben quasi das komplette ‚Regulatom’ dieser Signaturgene in einem kleinen DNA-Stück zusammengefasst und mit einem fluoreszierenden Protein verknüpft“, erklärt der Molekularbiologe. „Wenn sich der Zellzustand ändert, werden bestimmte Transkriptionsfaktoren aktiv, binden an den entsprechenden Zielgenen – und an unseren Reporter. Und dann geht in der Zelle das Licht an.“
Die Ursprungszellen eines Glioblastoms entwickeln sich wahrscheinlich aus neuralen Stammzellen und aus Gliazellen, dem Stützgewebe des Gehirns. Dabei wachsen sie stark in umliegendes Gewebe ein. Allein in Deutschland erkranken jedes Jahr etwa 4.800 Menschen neu an diesem sehr aggressiven Tumor. Die Diagnose ist noch immer ein Todesurteil. Denn selbst nach anfänglich erfolgreicher Standardbehandlung – Entfernung des Tumors mit anschließender Bestrahlung und Chemotherapie – kehrt er unweigerlich zurück und die Patienten sterben innerhalb weniger Monate. Medikamente, die bei anderen Krebsarten sehr erfolgreich sind, erreichen diesen Tumor in der Regel gar nicht, weil sie an der Blut-Hirn-Schranke scheitern.
Dank der neuen Einzelzelltechnologien wurde klar, wie heterogen ein Glioblastom ist. „Man hat gesehen, dass es viele unterschiedliche Zelltypen in verschiedenen Stadien gibt und es keine ‚One-fits-all’-Therapie geben kann“, erklärt Schmitt. Als wäre es nicht fatal genug, dass diverse genetische, epigenetische und transkriptionelle Faktoren bei der Resistenzentwicklung eine Rolle spielen – auch Zellen in der unmittelbaren Mikroumgebung des Tumors schalten sich ein.
Mit Hilfe der molekularen Reporter konnten Schmitt und seine Kollegen unter anderem sichtbar machen, dass Zellen des angeborenen Immunsystems die Tumorzellen regelrecht verteidigen, anstatt sie zu bekämpfen. Sie helfen dabei, den Identitätswechsel hin zum aggressivsten Zellsubtyp zu ermöglichen, der maximal resistent gegen Therapien ist. „Wir wissen inzwischen: Greift man einen Zelltyp mit einer Chemotherapie an, verändert sich die Tumorzusammensetzung in einen anderen“, sagt Schmitt. „Ein möglicher Ansatz wäre, dieses Ausweichmanöver zu nutzen, um die Anzahl der Zellzustände zu reduzieren und den Tumor möglichst in den am wenigsten aggressivsten Typ hineinzudrängen.“
Die Forscher können nun in Echtzeit verfolgen, wie einzelne Tumorzellen auf bestimmte Therapien reagieren. Das Team will herausfinden, ob und wie es möglich ist, die Immunzellen davon abzuhalten, die Tumorzellen zu unterstützen. Das Prinzip des aufblinkenden Reporters ist aber nicht nur bei Tumoren, sondern auch für viele andere biologische Fragestellungen anwendbar.
Dieser Artikel basiert auf einer Pressemitteilung des Max-Delbrück-Centrums für Molekulare Medizin in der Helmholtz-Gesellschaft. Die Originalpublikation findet ihr hier.
Bildquelle: Josh Boot, Unsplash.