Welche Gene in welcher Körperzelle aktiv sind, unterscheidet sich nach der Zellfunktion. Eine wichtige Rolle spielen dabei die Histone. Sie können durch das Anheften von Methyl- oder Acetylgruppen chemisch modifiziert werden. Doch wie werden diese Modifikationen bei der Zellteilung vererbt?
Bei der Zellteilung müssen die neu synthetisierten Histone in den Tochterzellen ebenso modifiziert werden wie jene, die bereits in der Ursprungszelle zur DNA-Verpackung dienten. „Dieser Mechanismus ist entscheidend, um das Zell-Gedächtnis und die Entstehung von Krankheiten wie Krebs zu verstehen. Bislang ist ziemlich unklar, wie das funktioniert“, sagt Axel Imhof. Die LMU-Forscher haben entlang bestimmter DNA-Abschnitte die neuen Histone markiert, um mithilfe der Massenspektrometrie nachvollziehen zu können, wie und wann sie sich bei der Zellteilung entsprechend ihrer alten Vorbilder verändern. Das Ziel der Forscher war es, so auch zeitlich zu messen, wann das epigenetische Gedächtnis der Zellen wiederhergestellt ist.
Während des Zellzyklus dauert es eine Weile, bis die neuen Histone so aussehen wie die alten. Viele Modifikationen wurden innerhalb eines Zellzyklus wiederhergestellt. „Es gab aber auch Histone, die die Modifikationen nicht vollständig übernommen haben“, sagt Imhof. „Das ist immer dann der Fall, wenn der Zellzyklus schneller ist als die modifizierenden Enzyme.“ Dieses Ergebnis hat wichtige Implikationen für die Tumorforschung. „Die langsame Etablierung der Histonmodifikationen in sich schnell teilenden Tumorzellen führt zu einem Verlust der epigenetischen Information und damit der für den Zelltyp spezifischen Genexpression“, sagt Imhof. Die Tumorzellen „erinnern“ sich nicht mehr, aus welcher Zelle sie ursprünglich stammen. Die Folge: Sie werden durch benachbarte Zellen nicht mehr im Wachstum gehemmt, was zu einer Zerstörung des umliegenden Gewebes führen kann.
Auch embryonale Stammzellen, die sich in verschiedene Zelltypen ausdifferenzieren können, teilen sich sehr schnell. Damit aus ihnen verschiedene Zelltypen werden können, müssen sich bei der Zellteilung die Modifikationen der Histone ändern können. „In der Embryonalentwicklung spielt die Veränderung der Modifikationen eine wichtige Rolle“, sagt Imhof. In der Stammzellforschung wird aktuell versucht, mit dieser Flexibilität der Zellen zu arbeiten und sie so für die therapeutische Anwendung nutzbar zu machen: Adulte Zellen werden zu pluripotenten Stammzellen umprogrammiert, sodass andere Zellen aus ihnen werden können. „Das funktioniert momentan nur sehr ineffizient“, sagt Imhof. In weiteren Untersuchungen will der Molekularbiologe mit seinem Team einen Inhibitor identifizieren, um jene Enzyme, die für Modifikationen wichtig sind, gezielt ausschalten zu können. Dadurch würde es leichter fallen, Zellen gezielt umzuprogrammieren. Originalpublikation: Two distinct modes for propagation of histone PTMs across the cell cycle Axel Imhof et al.: Genes & Development, doi: 10.1101/gad.256354.11; 2015