Wie müssen Antibiotika beschaffen sein, um Resistenzen vorzubeugen? Das detaillierte Verständnis zur Funktion und Wechselwirkung der bakteriellen RNA-Polymerase hat weitere Hinweise geliefert. Die Erkenntnisse erlauben Rückschlüsse für die maßgeschneiderte Synthese neuer Wirkstoffe.
Aktuell gehört die Abwehr von Bakterien, gegen die alle derzeit zur Verfügung stehenden Antibiotika unwirksam sind, zu den größten Herausforderungen der Medizin. Die meisten dieser Antibiotika richten sich gegen bakterielle Zellwände und deren Bestandteile, oder sie stören die Synthese bakterieller Proteine. Neuere Antibiotika wiederum richten sich gegen das Kopieren von bakteriellen DNA-Informationen. Die Problematik ist dabei die gleiche: Einige Bakterien entwickeln Mechanismen, die sie gegen diese – eigentlich tödlichen – Substanzen schützt. Sie werden resistent. Eine Chance, dieser Situation Herr zu werden, liegt für die Medizin in der Entwicklung neuartiger Wirkstoffe, die grundlegende Prozesse in der bakteriellen Zelle unterbrechen.
Ein Beispiel für einen solchen Prozess ist die Übersetzung der Erbinformation, die in der DNA gespeichert ist, in eine RNA-Sequenz. Hierbei handelt es sich um eine für die Proteinherstellung verwertbare Form der Erbinformation. Der als Transkription bezeichnete Übersetzungsprozess, der durch die RNA-Polymerase (RNAP) katalysiert wird, ist hoch komplex und wird durch andere bakterielle Proteine, die an die RNAP binden, präzise gesteuert. Viele Details dieser bakteriellen Übersetzungsmaschinerie sind derzeit noch unbekannt. Genauere Kenntnisse könnten aber eines Tages die gezielte Konstruktion von Wirkstoffen erlauben, die genau diese Maschinerie lahmlegen – und die Bakterien daran hindern, resistent zu werden. An genau diesem Punkt setzt die Untersuchung mittels magnetischer Kernresonanzspektroskopie (NMR-Spektroskopie) der Forschungsgruppe um Prof. Dr. Paul Rösch an, die zu den neuen Ergebnissen geführt haben. Die räumlichen, dreidimensionalen Strukturen der an der Transkription beteiligten Moleküle sind bereits durch Röntgenstrukturanalyse und Elektronenmikroskopie untersucht worden. Im Vergleich zu diesen Techniken zeichnet sich die NMR-Spektroskopie aber dadurch aus, dass Wechselwirkungen von Molekülen und die Dynamik von Molekülstrukturen relativ einfach zu untersuchen sind. Gerade solche Prozesse spielen eine entscheidende Rolle bei der Transkription. Daher ist ihr Verständnis unabdingbar für die gezielte Entwicklung von Antibiotika.
Mit NMR-Spektroskopie sind nur bestimmte, nicht-radioaktive Atomsorten (Isotope) detektierbar, die durch molekularbiologische Methoden in Proteine eingebracht werden. Diese Isotope dienen als Sonden und ermöglichen wichtige Einblicke in molekulare Strukturen sowie in die Veränderungen, denen diese Strukturen unterliegen. Bislang konnte die NMR-Spektroskopie vorwiegend nur bei kleinen und mittelgroßen Proteinen eingesetzt werden. Die Arbeitsgruppe hat aber nun Wege gefunden, das sehr große und hoch komplexe Molekül RNAP der Untersuchung durch NMR-Spektroskopie zugänglich zu machen. Die Wissenschaftler haben sich eine spezielle Technik zunutze gemacht, um ausschließlich bestimmte, sehr bewegliche Gruppen von Atomen, die nur in einzelnen Proteinbausteinen vorkommen, molekularbiologisch in definierter Art und Weise mit NMR-aktiven Isotopen zu markieren. Diese Gruppen waren trotz der Proteingröße beobachtbar und dienten den Wissenschaftlern als Sonden im Gesamtprotein. Gleichzeitig gelang es, die fünf Untereinheiten, aus denen die RNAP aufgebaut ist, einzeln herzustellen, individuell zu markieren und anschließend das Gesamtprotein wieder zusammenzusetzen. So konnte auch spezifisch eine einzelne Untereinheit innerhalb der gesamten RNAP detektiert werden. In einem ersten Experiment konnte so gezeigt werden, an welche der Untereinheiten bestimmte Proteine binden. In einem zweiten Schritt wird zurzeit mittels eines analogen Markierungsverfahrens bestimmt, wie die Kontaktflächen zwischen den Bindeproteinen und der RNAP aussehen. Kleine und mittelgroße Proteine binden an die bakterielle RNA-Polymerase. © Dr. Stefan Knauer, Universität Bayreuth.
„Mit den von uns entwickelten Verfahren wollen wir die Wechselwirkungen zwischen der bakteriellen RNAP und kleineren Proteinen, die daran binden, so präzise wie möglich untersuchen. Zusammen mit unseren bereits veröffentlichten Erkenntnissen über das Zusammenspiel der Transkription mit der Proteinbiosynthese werden wir so ein gutes Bild davon erhalten, wie bakterielle Regulationsprozesse ablaufen. Vor allem werden wir Aufschluss darüber gewinnen, wie sich diese Prozesse von den entsprechenden Mechanismen im Menschen unterscheiden. Wir erwarten, dass sich auf dieser Basis neue Antibiotika entwerfen lassen, gegen die Bakterien nicht resistent werden können“, erklärt der Bayreuther Arbeitsgruppenleiter Dr. Stefan Knauer. Wie neue Wirkstoffe aussehen könnten, die das bakterielle System stören, aber das menschliche unbeeinflusst lassen, könne mit dem neuen Forschungsansatz weiter aufgeklärt werden. In Zusammenhang mit ihren NMR-spektroskopischen Untersuchungen ist den Strukturbiologen also ein Novum geglückt: Die erfolgreiche Anwendung der NMR-Spektroskopie auf ein sehr großes, aus unterschiedlichen Untereinheiten aufgebautes, multimeres Protein. „Wenn es darum geht, die Struktur von Proteinen dieser Größe zu bestimmen, wird sich die NMR-Spektroskopie auch in naher Zukunft nicht mit Elektronenmikroskopie und Röntgenstrukturanalyse messen können. Wir konnten mit unserer Arbeit aber zeigen, dass sich die Stärken der NMR-Spektroskopie, nämlich die Untersuchung von molekularen Interaktionen und molekularer Dynamik, auch auf sehr große Molekülkomplexe anwenden lassen“, erklärt Rösch. Originalpublikation: Exploring RNA polymerase regulation by NMR spectroscopy Johanna Drögemüller et al.; Scientific Reports, doi: 10.1038/srep10825; 2015