Wie wird eine Gewebeveränderung ausgelöst? Am Beispiel des Zebrafisches lässt sich das bereits ab Morphogenese auf zellulärer Ebene beobachten. Das könnte auch für die Krebsforschung interessant sein.
Um mehr darüber zu erfahren, wie sich ein winziger Zellhaufen zu komplexen Systemen wie Fischen, Menschen oder Tieren so groß wie Elefanten entwickelt, nutzen Forschende den Zebrafisch (Danio rerio). Er hat einige Vorteile, die ihn zu einem der beliebtesten Modellorganismen von Entwicklungsbiolog_innen wie Nicoletta Petridou machen. Die kleinen gestreiften Fische entwickeln sich innerhalb weniger Tage, die Embryonen tun dies außerhalb ihrer Mütter und sind transparent – man kann den Organen also beim Wachsen zusehen.
Bei der Untersuchung von Zebrafischembryos entdeckten Petridou und ihre Kollegen in einer früheren Studie eine plötzliche Veränderung der Viskosität des Gewebes – ein Maß für die Verformungsresistenz eines Materials. „In diesem frühen Stadium ist das Gewebe, das den Embryo bildet, sehr starr, aber plötzlich sinkt die Viskosität um das Zehnfache und das Gewebe verflüssigt sich“, erklärt die Biologin.
Gleichzeitig beginnt der Embryo sich zum ersten Mal deutlich zu verändern. Diese Phase wird Morphogenese genannt. In ihrer neuen Studie haben sich die Forscher_innen genauer angesehen, was auf zellulärer Ebene passiert während sich das Gewebe verflüssigt. „Vor diesem Übergang von fest zu flüssig ist eine einzelne Zelle mit vier bis fünf benachbarten Zellen verbunden. Zu Beginn der Verflüssigung hat sie nur mehr drei bis vier Nachbarn“, sagt Petridou.
Könnte diese kleine Veränderung in der Vernetzung der Zellen wirklich für eine zehnfache Veränderung der Viskosität des Gewebes verantwortlich sein? „Das war der Zeitpunkt, als wir uns an die Physik gewandt haben, um diese Effekte mithilfe eines physikalischen Konzepts zu erklären“, so die Molekular- und Entwicklungsbiologin.
„Nicoletta hat also diesen massiven Abfall der Gewebeviskosität auf makroskopischer Ebene beobachtet, der offenbar nicht zu dem passt, was auf der mikroskopischen Ebene vor sich geht. Das ist ein zentraler Punkt der Physik: das, was auf der mikroskopischen Ebene passiert, mit der makroskopischen Ebene zu verbinden“, sagt Bernat Corominas-Murtra, Mitglied der Forschungsgruppe von Edouard Hannezo.
Mittels eines Konzepts der Materialwissenschaft erkannte das Team, dass jede Zelle, die mit vier Nachbarzellen verbunden war, eine ganz besondere Grenze markiert. Bereits im 19. Jahrhundert stellte der Physiker James Clerk Maxwell fest, dass Strukturen wie etwa Brücken unterhalb eines bestimmten Levels von Verbindungen nicht mehr starr sein können. Das passte genau zu der experimentell beobachteten Verflüssigung des Gewebes, die auftritt, wenn Zellen mit weniger als vier Nachbarn verbunden sind. Damit konnte das Team zeigen, dass die Verflüssigung des Gewebes Merkmale eines Phasenübergangs aufweist, also dem Übergang von einem Aggregatzustand wie fest, flüssig oder gasförmig in einen anderen.
Auch wenn die Forschenden das Gewebe beliebig manipulierten, reichte der kritische Punkt der Verbindungen aus, um die beobachteten abrupten Änderungen der Gewebeviskosität zu erklären. Außerdem konnten sie alle theoretisch zu erwartenden Merkmale eines Phasenübergangs, wie er in nicht-lebenden Systemen vorkommt, nachweisen. „Es ist einzigartig, alle erwarteten Eigenschaften eines Phasenübergangs in einem realen, lebenden System nachweisen zu können. Vor allem, weil die Phasenübergangstheorie für Systeme mit einer Milliarde Komponenten gemacht ist, während wir hier über ein System mit ein paar hundert Komponenten sprechen“, erklärt Corominas-Murtra.
Doch wenn der Verlust von nur einer Verbindung pro Zelle ausreicht, um eine so signifikante Veränderung des Gewebes des Embryos auszulösen, wie wird dann eine zufällige Veränderung zur falschen Zeit vermieden? „Jetzt, da wir wissen, dass es einen kritischen Punkt gibt, können wir fragen, was sein Gleichgewicht reguliert. Eine der Regulierungen, die wir gefunden haben, ist das Timing der Zellteilungen, das reguliert, wie sich die Gewebekonnektivität und damit die Viskosität in Raum und Zeit verändert“, so Petridou.
Dieser Phasenübergang im Gewebe ist essentiell für die weitere Entwicklung des winzigen Fischembryos, scheint aber auch beim Wachstum von Krebszellen eine Rolle zu spielen. Neueste Studien zeigen, dass, wenn ein Tumor metastasiert, sich das Gewebe ebenfalls abrupt von fest zu flüssig verändert. Das könnte Krebszellen dabei helfen, sich leichter zu bewegen.
„Wenn man diesen kritischen Punkt ermitteln kann, eröffnet das Wege, ihn zu manipulieren“, sagt Petridou. „Wir haben noch nicht die Werkzeuge dafür, aber anstatt sich konzeptionell auf eine Vielzahl von Genen zu konzentrieren, die beim Krebswachstum eine Rolle spielen könnten, könnte man bei dem kritischen Punkt ansetzen, der die Gewebeveränderung auslöst.“
Dieser Artikel basiert auf einer Pressemitteilung des Institute of Science and Technology Austria. Die Studie haben wir euch hier und im Text verlinkt.
Bildquelle: Victoria Wendish, Unsplash