Wird im Zebrafisch ein Gen ausgeschaltet, springen andere Gene ein und mildern die Auswirkungen ab oder gleichen diese komplett aus. Bei der Blockade eines Gens kommt es jedoch nicht zu einer Verlust-Kompensation. Eine wichtige Erkenntnis für die Entwicklung von Gentherapien.
Es ist bekannt, dass Studien mit Knockout- und Knockdown-Tieren zu unterschiedlichen Ergebnissen führen können. Wissenschaftler aus der Arbeitsgruppe von Didier Stainier am Max-Planck-Institut für Herz- und Lungenforschung haben nun die Gründe dafür entdeckt. Die Forscher haben ein Gen namens egfl7 in Zebrafischen untersucht. Dieses Gen ist an der Entstehung von Bindegewebe in der Wand von Blutgefäßen beteiligt und stabilisiert sie. Dadurch reguliert egfl7 das Gefäßwachstum.
Entwicklungsbiologen sind sich jedoch uneins, was im Körper des Fischs passiert, wenn das egfl7-Gen ausgeschaltet wird. „Wird das Gen mit einem Knockdown-Verfahren blockiert, entwickeln sich die Blutgefäße in den Fischlarven nicht korrekt“, erklärt Andrea Rossi, der zusammen mit Zacharias Kontarakis die Studie federführend durchgeführt hat. Schaltet man hingegen durch einen genetischen Eingriff das Gen selbst aus, beeinträchtigt dies das Wachstum der Blutgefäße nicht. Zunächst konnten die Forscher in einem Experiment ausschließen, dass Nebenwirkungen des Knockdown-Wirkstoffes für die Störung der Gefäßentwicklung verantwortlich sind. Dazu injizierten sie die Substanz in Fischlarven, bei denen das egfl7-Gen bereits ausgeschaltet war. Trotz der Behandlung entwickelten sich die Larven weitestgehend normal.
„Da der Wirkstoff keine Störung im Gefäßwachstum verursacht, haben wir einen anderen Mechanismus vermutet: Der Verlust eines Gens könnte kompensiert werden, indem ein anderes Gen die Aufgabe übernimmt“, sagte Kontarakis. „Wir haben deshalb nach Rettungsgenen gesucht, die in Tieren ohne funktionierendes egfl7-Gen verstärkt gebildet werden.“ Die Forscher verglichen daraufhin die gebildeten Boten-RNA-Moleküle und Proteine zwischen Fischen ohne funktionstüchtiges egfl7-Gen und normalen Tieren. Dabei stießen sie auf verschiedene mRNAs und deren Proteine, die in Fischen ohne egfl7 in größeren Mengen vorliegen. Ein Beispiel ist das Protein Emilin 3B. Werden „Knockdown“-Fischlarven mit Emilin 3B behandelt, in denen egfl7 zuvor blockiert worden war, entwickeln sich ihre Blutgefäße weitgehend normal. „Emilin 3B kann also den Ausfall von egfl7 kompensieren. In den egfl7-Knockout-Fischen wird das Emilin verstärkt gebildet und kann so das Fehlen von egfl7 ausgleichen. In den Knockdown-Fischen geschieht das nicht“, erklärt Stainier. Die Ergebnisse helfen möglicherweise dabei, die Befunde molekularbiologischer Studien korrekt zu interpretieren und Gentherapien zur Behandlung von Krankheiten zu entwickeln. Blutgefäße einer Zebrafisch-Larve: Fehlt das Gen egfl7, bilden sich die Blutgefäße (grün gefärbt) nicht korrekt. © MPI f. Herz- und Lungenforschung
Als nächstes will die Arbeitsgruppe analysieren, woher Gene „wissen“, dass ein anderes Gen ausgeschaltet wurde und wie sie dann den Verlust kompensieren. „Weltweit arbeiten viele Wissenschaftler daran, krankmachende Gene auszuschalten und so Krankheiten zu behandeln. Für solche Therapien müssen wir unbedingt wissen, welche Auswirkungen der Verlust oder die Blockade eines Gens haben können. Zudem zeigt unsere Studie die Stärke eines Vergleichs zwischen Knockdown- und Knockout-Daten, um modifizierende Gene zu identifizieren“, sagt Stainier. Dabei handelt es sich nach seiner Meinung um eine der großen Herausforderungen im Bereich der Humangenetik. Originalpublikation: Genetic compensation induced by deleterious mutations but not gene knockdowns Andrea Rossi et al.; Nature, doi: 10.1038/nature14580; 2015