Nervenzellen lassen sich nach Gehirnverletzungen bisher nicht ersetzen. Jetzt konnten Gliazellen in Neurone umprogrammiert werden. Dafür wird ein Faktor hinzugefügt, der die Umwandlung veranlasst, sowie Substanzen, die das Überleben fördern und den oxidativen Stress blockieren.
Die Neurogenese im Gehirn ist beim Menschen überwiegend auf die Entwicklungsphase beschränkt und findet im Erwachsenenstadium nur noch in sehr wenigen Regionen des Vorderhirns statt. Daher kann der Körper nach Gehirnverletzungen, etwa durch ein Trauma, abgestorbene Nervenzellen nicht mehr ersetzen. Mit dem Ansatz, neue Nervenzellen aus Gliazellen, eigentlich Stützzellen des Hirngewebes, herzustellen, arbeitet Professor Magdalena Götz, Direktorin des Instituts für Stammzellforschung am Helmholtz Zentrum München, bereits seit Jahren. Erstmals gelang ihr eine solche Umwandlung in vivo in begrenztem Umfang im Jahre 2005. Es entstanden nur sehr wenige, noch unreife Neurone, und viele von ihnen starben im Verlauf der ersten Wochen ab.
Mit einer neuen Methode gelang es den Forschern nun, die behandelten Gliazellen nahezu vollständig in Nervenzellen umzuwandeln, die über lange Wochen lebensfähig waren. Dafür mussten die Wissenschaftler nur einen bestimmten Faktor hinzufügen, der die Umwandlung in Neurone veranlasst, und eine weitere Substanz, die das Überleben der Zellen fördert und den oxidativen Stress blockiert. Zunächst hatte die Gruppe die Umwandlung von Gliazellen in Nervenzellen in Zellkultur untersucht, und festgestellt, dass sehr viele Zellen bei diesem Vorgang sterben. In Zusammenarbeit mit der Arbeitsgruppe von Dr. Marcus Conrad entdeckten die Wissenschaftler zu ihrer Überraschung, dass nur die Neurone, nicht aber die Gliazellen einen besonderen Zelltod sterben – den Tod der „Ferroptosis“. Dieser beruht auf einem Übermaß an reaktivem Sauerstoff in der Zelle, das entsteht, wenn sich Gliazellen zu schnell auf den Stoffwechsel der Nervenzellen umstellen. Die Zellen produzieren sehr viele reaktive Sauerstoffmoleküle, ihnen fehlen aber noch die entsprechenden Schutzmechanismen.
In vivo zeigen sich diese völlig neuen Befunde aus der Zellkultur mit einem noch dramatischeren Effekt. Wenn Gliazellen nach traumatischer Gehirnverletzung nur mit einem Faktor, der die Bildung von Nervenzellen veranlasst, transduziert werden, wandeln sich nur etwa zehn Prozent aller Gliazellen in Nervenzellen um. Werden sie aber zusätzlich mit dem Protein Bcl-2 vor dem Zelltod geschützt, sind es rund 80 Prozent. Bekommen die Zellen außerdem noch Vitamin E als Schutz vor oxidativem Stress, erreicht man fast hundert Prozent, und die umgewandelten Nervenzellen zeigen einen erstaunlichen Reifegrad. Ansätze zu neuen Therapien gegen Erkrankungen des Gehirns wie zum Beispiel Schlaganfall oder Demenzerkrankungen konzentrieren sich vor allem darauf, untergegangene Nervenzellen zu ersetzen. Stammzellen sind aber kaum noch vorhanden im menschlichen Gehirn. „Daher erlaubt der Ansatz, neue Nervenzellen aus Gliazellen herzustellen, auch Gehirnregionen zu reparieren, die weit weg von Stammzellnischen sind“, betont Götz. „Zum ersten Mal haben wir jetzt nicht nur viele, sondern auch richtig reife Nervenzellen erzeugen können. Nun können wir deren Verknüpfungen mit den verbliebenen Nervenzellen untersuchen – um festzustellen, ob sie sich auch richtig in das Nervenzellnetzwerk integrieren.“ Originalpublikation: Identification and successful negotiation of a metabolic checkpoint in direct neuronal reprogramming Sergio Gascón et al.; Cell Stem Cell, doi: 10.1016/j.stem.2015.12.003; 2016