Wenn neue Blutgefäße wachsen, müssen sie sich entscheiden, ob sie neue Seitenäste bilden oder ihren Durchmesser vergrößern. Sie kommunizieren dafür untereinander mit oszillierenden Signalen. Sind diese synchron, wird das Gefäß größer, sind sie es nicht, startet der Verzweigungsmodus.
Wenn neue Blutgefäße wachsen, müssen sie sich entscheiden, ob sie neue Seitenäste bilden oder ihren Durchmesser vergrößern. „Eine der großen Fragen der Biologie der Blutgefäße ist: Wie werden Größe und Form dieses schlauchartigen Organsystems reguliert?“, sagt Prof. Holger Gerhardt, Gruppenleiter am MDC in Berlin-Buch.
Das Hormon VEGFA spielt eine Hauptrolle bei dem Wachstum der Adern. Bei niedrigem VEGFA-Spiegel schaltet es die Gefäßzellen in den Verzweigungsmodus – dem Gefäß wachsen neue Seitenäste. Ist es höher konzentriert, lässt es die Gefäße an Durchmesser zulegen. Der zu Grunde liegende Mechanismus war bisher nicht bekannt. Gerhardt klärt die Zusammenhänge auf: „Unsere Studie zeigt, dass sich die Zellen der Adern jeweils neu anordnen, um neue Seitenäste zu bilden oder den Durchmesser zu vergrößern.“ Der VEGFA-Spiegel beeinflusst den Notch-Signalweg, über den benachbarte Gefäßzellen miteinander kommunizieren. In der Signalkette werden bestimmte Proteine in der Zelle periodisch hergestellt und gleich wieder abgebaut, was zu einer oszillierenden Aktivität des Notch-Signalwegs in den Gefäßzellen führt. Die fluoreszenzmarkierte Netzhaut einer Maus unter dem Mikroskop. Links: Blutgefäße im Verzweigungsmodus, rechts verdicken sie sich. Die oszillierenden Proteine leuchten rot. © CC-BY, eLife Bei einem hohen VEGFA-Spiegel synchronisieren sich diese Oszillationen benachbarter Zellen zunehmend miteinander – die Gefäßzellen marschieren im Takt und sorgen so als Kollektiv für die Vergrößerung des Durchmessers des Gefäßes. Bei niedrigem VEGFA-Spiegel geraten die intrazellulären Schwankungen dagegen wieder aus dem Takt. Die Zellen bewegen sich dann individuell und das Blutgefäß befindet sich im Verzweigungsmodus.
Die oszillierenden Proteine sind nur schwer zu beobachten, weil sie so rasch wieder abgebaut werden. Mit einer fluoreszierenden Markierung versehen, waren die Schwankungen zwar in präparierten Netzhäuten von Mäusen sichtbar, die kollektiven Zellbewegungen aber nur in Zellkultur-Versuchen. Für Beobachtungen im lebenden Organismus sind daher bessere, stärker leuchtende Fluoreszenzmarker nötig. An deren Entwicklung arbeiten die Forscher nun. Der neu entdeckte Mechanismus ist auch auch für die Therapie von Krankheiten relevant, erklärt Gerhardt: „Wir zeigen in der Arbeit auch, dass dieser Mechanismus für die Gefäßverdickung in Krankheitsmodellen für diabetische Retinopathie oder Krebs verantwortlich ist.“ Diabetische Retinopathie ist eine der häufigsten Ursachen für die Erblindung bei Erwachsenen. Die unkontrollierte Angiogenese treibt auch die Krebsentwicklung voran. Die Forschungsergebnisse sind somit für Therapien von Bedeutung, die Gefäße wieder normalisieren oder ihr Wachstum hemmen. Originalpublikation: Synchronization of endothelial Dll4-Notch dynamics switches blood vessels from branching to expansion. Benedetta Ubezio et al.; eLIFE, doi: 10.7554/eLife.12167; 2016